Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7663, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561404

RESUMO

Heavy metal contamination is an urgent ecological governance problem in mining areas. In order to seek for a green and environmentally friendly reagent with better plant restoration effect to solve the problem of low efficiency in plant restoration in heavy metal pollution soil. In this study, we evaluated the effects of three biodegradable chelating agents, namely citric acid (CA), fulvic acid (FA) and polyaspartic acid (PASP), on the physicochemical properties of copper tailings, growth of ryegrass (Lolium perenne L.) and heavy metal accumulation therein. The results showed that the chelating agent application improved the physicochemical properties of copper tailings, increased the biomass of ryegrass and enriched more Cu and Cd in copper tailings. In the control group, the main existing forms of Cu and Cd were oxidizable state, followed by residual, weak acid soluble and reducible states. After the CA, FA or PASP application, Cu and Cd were converted from the residual and oxidizable states to the reducible and weak acid soluble states, whose bioavailability in copper tailings were thus enhanced. Besides, the chelating agent incorporation improved the Cu and Cd extraction efficiencies of ryegrass from copper tailings, as manifested by increased root and stem contents of Cu and Cd by 30.29-103.42%, 11.43-74.29%, 2.98-110.98% and 11.11-111.11%, respectively, in comparison with the control group. In the presence of multiple heavy metals, CA, FA or PASP showed selectivity regarding the ryegrass extraction of heavy metals from copper tailings. PCA analysis revealed that the CA-4 and PASP-7 treatment had great remediation potentials against Cu and Cd in copper tailings, respectively, as manifested by increases in Cu and Cd contents in ryegrass by 90.98% and 74.29% compared to the CK group.


Assuntos
Lolium , Metais Pesados , Poluentes do Solo , Cobre/metabolismo , Cádmio/metabolismo , Quelantes/farmacologia , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Metais Pesados/análise , Ácidos/metabolismo , Solo/química
2.
Environ Sci Pollut Res Int ; 31(17): 25059-25075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462565

RESUMO

A field trial was performed to carry out an enhanced phytoremediation technique for multi-metal contaminated copper tailings by Sudan grass (Sorghum Sudanese), ryegrass (Lolium perenne L.), and Bermuda grass (Cynodon dactylon), using conditioner (TH-LZ01) and straw combination into composite amendments as soil amendments, aimed to obtain the maximum of phytoremediation effect. The results showed that compared with untreated herbaceous plants, the application of conditioner and straw planted with herbaceous plants reduced the pH and conductivity and increased the organic matter and water content of the copper tailings to different degrees. With the addition of conditioner and straw, the DTPA-Cd, DTPA-Cu, DTPA-Pb, and DTPA-Zn contents in the copper tailings showed a decreasing trend compared with the untreated group. The herbaceous plants were promoted to reduce the percentage contents of acid soluble fractions Cd, Cu, Pb, and Zn and to increase the percentage contents of reducible, oxidizable, and residual fractions heavy metals (Cd, Cu, Pb, and Zn) in the copper tailings to different degrees. The contents of Cd, Cu, Pb, and Zn in the underground part of herbaceous plants were higher than those in the aboveground part, and the contents of Cd, Cu, Pb, and Zn in the aboveground part and underground part decreased after adding conditioner and straw, which indicated that the conditioner and straw inhibited the transport of heavy metals in the plant. Furthermore, the principal component analysis showed that the application of conditioner and straw with planting ryegrass had more potential for improving the physicochemical properties of copper tailings and reducing heavy metal toxicity, followed by Bermuda grass and Sudan grass.


Assuntos
Metais Pesados , Poluentes do Solo , Cobre/análise , Biodegradação Ambiental , Cádmio/análise , Lagoas , Chumbo/análise , Poluentes do Solo/análise , Metais Pesados/análise , Plantas , China , Solo/química , Ácido Pentético
3.
Bioresour Technol ; 397: 130502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417463

RESUMO

Branched-chain amino acids (BCAAs) such as L-valine, L-leucine, and L-isoleucine are widely used in food and feed. To comply with sustainable development goals, commercial production of BCAAs has been completely replaced with microbial fermentation. However, the efficient production of BCAAs by microorganisms remains a serious challenge due to their staggered metabolic networks and cell growth. To overcome these difficulties, systemic metabolic engineering has emerged as an effective and feasible strategy for the biosynthesis of BCAA. This review firstly summarizes the research advances in the microbial synthesis of BCAAs and representative engineering strategies. Second, systematic methods, such as high-throughput screening, adaptive laboratory evolution, and omics analysis, can be used to analyses the synthesis of BCAAs at the whole-cell level and further improve the titer of target chemicals. Finally, new tools and engineering strategies that may increase the production output and development direction of the microbial production of BCAAs are discussed.


Assuntos
Aminoácidos de Cadeia Ramificada , Isoleucina , Aminoácidos de Cadeia Ramificada/metabolismo , Leucina/metabolismo , Valina , Engenharia Metabólica
4.
Bioresour Technol ; 393: 130153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052329

RESUMO

L-serine is a high-value amino acid widely used in the food, medicine, and cosmetic industries. However, the low yield of L-serine has limited its industrial production. In this study, a cellular factory for efficient synthesis of L-serine was obtained by engineering the serine hydroxymethyltransferases (SHMT). Firstly, after screening the SHMT from Alcanivorax dieselolei by genome mining, a mutant AdSHMTE266M with high thermal stability was identified through rational design. Subsequently, an iterative saturating mutant library was constructed by using coevolutionary analysis, and a mutant AdSHMTE160L/E193Q with enzyme activity 1.35 times higher than AdSHMT was identified. Additionally, the target protein AdSHMTE160L/E193Q/E266M was efficiently overexpressed by improving its mRNA stability. Finally, combining the substrate addition strategy and system optimization, the optimized strain BL21/pET28a-AdSHMTE160L/E193Q/E266M-5'UTR-REP3S16 produced 106.06 g/L L-serine, which is the highest production to date. This study provides new ideas and insights for the engineering design of SHMT and the industrial production of L-serine.


Assuntos
Escherichia coli , Glicina Hidroximetiltransferase , Escherichia coli/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Serina/genética , Serina/metabolismo , Engenharia Metabólica
5.
Bioresour Technol ; 393: 130125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040317

RESUMO

Cascade biocatalyst systems with catalytic promiscuity can be used for synthesis of a class of chiral chemicals but the optimization of these systems by model guidance is poorly explored. In this study, a cascade system with broad substrate spectrum was characterized and simulated by kinetic model with substrates of DL-Norvaline (DL-Nor) and DL-Phenylglycine (DL-Phg) as examples. To evaluate the optimal cascade system, maximum accumulation of intermediate products and conversion rate in the process were investigated by simultaneous solution of the rate equations for varying enzyme quantities. According to the simulation results, the cascade system was optimized by regulating the expression of D-amino acid oxidase and formate dehydrogenase and was prepared by one-step. The conversion efficiency of DL-Nor and DL-Phg have been significantly improved compared with that of before optimization. Moreover, the total of L-Nor and L-Phg were reached 498.2 mM and 79.5 mM through a gradient fed-batch conversion strategy, respectively.


Assuntos
Glicina , Valina/análogos & derivados , Glicina/metabolismo , Catálise
6.
Bioresour Technol ; 394: 130200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103752

RESUMO

L-theanine is a natural non-protein amino acid with wide applications. Thus, a high yield of L-theanine production is required on an industrial scale. Herein, an efficient L-theanine-producing strain of Corynebacterium glutamicum was constructed by combining protein and metabolic engineering. Firstly, a γ-glutamylmethylamide synthetase from Paracoccus aminovorans (PaGMAS) was isolated and engineered by computer-aided design, the resulting mutant E179K/N105R improved L-theanine yield by 36.61 %. Subsequently, to increase carbon flux towards L-theanine production, the gene ggt which degrades L-theanine, the gene alaT which participated in L-alanine synthesis, and the gene NCgl1221 which encodes glutamate-exporting protein were deleted. Finally, ppk gene was overexpressed to enhance intracellular ATP production. The reprogramed strain produced 44.12 g/L L-theanine with a yield of 57.11 % and productivity of 1.16 g/L/h, which is the highest L-theanine titer reported by Corynebacterium glutamicum. This study provides an efficient and economical biosynthetic pathway for the industrial production of L-theanine.


Assuntos
Corynebacterium glutamicum , Glutamatos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Fermentação , Ácido Glutâmico/metabolismo
7.
Bioresour Technol ; 389: 129828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806363

RESUMO

L-Homoserine is an important amino acid as a precursor in synthesizing many valuable products. However, the low productivity caused by slow L-homoserine production during active cell growth in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating cell division were employed in an L-homoserine-producing Escherichia coli strain for efficiently biomanufacturing L-homoserine. First, the flux-control genes in the L-homoserine degradation pathway were omitted to redistribute carbon flux. To drive more carbon flux into L-homoserine production, the phosphoenolpyruvate-pyruvate-oxaloacetate loop was redrawn. Subsequently, the cell division was engineered by using the self-regulated promoters to coordinate cell growth and L-homoserine production. The ultimate strain HOM23 produced 101.31 g/L L-homoserine with a productivity of 1.91 g/L/h, which presented the highest L-homoserine titer and productivity to date from plasmid-free strains. The strategies used in this study could be applied to constructing cell factories for producing other L-aspartate derivatives.


Assuntos
Escherichia coli , Homosserina , Escherichia coli/genética , Escherichia coli/metabolismo , Homosserina/genética , Homosserina/metabolismo , Engenharia Metabólica , Fermentação , Divisão Celular
8.
Biotechnol Biofuels Bioprod ; 16(1): 145, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775757

RESUMO

BACKGROUND: L-Leucine is a high-value amino acid with promising applications in the medicine and feed industries. However, the complex metabolic network and intracellular redox imbalance in fermentative microbes limit their efficient biosynthesis of L-leucine. RESULTS: In this study, we applied rational metabolic engineering and a dynamic regulation strategy to construct a plasmid-free, non-auxotrophic Escherichia coli strain that overproduces L-leucine. First, the L-leucine biosynthesis pathway was strengthened through multi-step rational metabolic engineering. Then, a cooperative cofactor utilization strategy was designed to ensure redox balance for L-leucine production. Finally, to further improve the L-leucine yield, a toggle switch for dynamically controlling sucAB expression was applied to accurately regulate the tricarboxylic acid cycle and the carbon flux toward L-leucine biosynthesis. Strain LEU27 produced up to 55 g/L of L-leucine, with a yield of 0.23 g/g glucose. CONCLUSIONS: The combination of strategies can be applied to the development of microbial platforms that produce L-leucine and its derivatives.

9.
Bioresour Technol ; 386: 129475, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451510

RESUMO

Development of microbial cell factory for L-tryptophan (L-trp) production has received widespread attention but still requires extensive efforts due to weak metabolic flux distribution and low yield. Here, the riboswitch-based high-throughput screening (HTS) platform was established to construct a powerful L-trp-producing chassis cell. To facilitate L-trp biosynthesis, gene expression was regulated by promoter and N-terminal coding sequences (NCS) engineering. Modules of degradation, transport and by-product synthesis related to L-trp production were also fine-tuned. Next, a novel transcription factor YihL was excavated to negatively regulate L-trp biosynthesis. Self-regulated promoter-mediated dynamic regulation of branch pathways was performed and cofactor supply was improved for further L-trp biosynthesis. Finally, without extra addition, the yield of strain Trp30 reached 42.5 g/L and 0.178 g/g glucose after 48 h of cultivation in 5-L bioreactor. Overall, strategies described here worked up a promising method combining HTS and multidimensional regulation for developing cell factories for products in interest.


Assuntos
Escherichia coli , Triptofano , Triptofano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Fermentação
10.
Bioresour Technol ; 385: 129399, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37380039

RESUMO

2-O-α-D-glucopyranosyl-sn-glycerol (2-αGG) is a high value product with wide applications. Here, an efficient, safe and sustainable bioprocesses for 2-αGG production was designed. A novel sucrose phosphorylase (SPase) was firstly identified from Leuconostoc mesenteroides ATCC 8293. Subsequently, SPase mutations were processed with computer-aided engineering, of which the activity of SPaseK138C was 160% higher than that of the wild-type. Structural analysis revealed that K138C was a key functional residue moderating substrate binding pocket and thus influences catalytic activity. Furthermore, Corynebacterium glutamicum was employed to construct microbial cell factories along with ribosome binding site (RBS) fine-tuning and a two-stage substrate feeding control strategy. The maximum production of 2-αGG by these combined strategies reached 351.8 g·L-1 with 98% conversion rate from 1.4 M sucrose and 3.5 M glycerol in a 5-L bioreactor. This was one of the best performance reported in single-cell biosynthesis of 2-αGG, which paved effective ways for industrial-scale preparation of 2-αGG.


Assuntos
Leuconostoc mesenteroides , Leuconostoc mesenteroides/metabolismo , Glicerol , Sacarose/metabolismo , Biotransformação , Leuconostoc/genética , Leuconostoc/metabolismo
11.
Microbiome ; 11(1): 18, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721246

RESUMO

BACKGROUND: Narrow host range is a major limitation for phage applications, but phages can evolve expanded host range through adaptations in the receptor-binding proteins. RESULTS: Here, we report that Pseudomonas phage K8 can evolve broader host range and higher killing efficiency at the cost of virion stability. Phage K8 host range mutant K8-T239A carries a mutant version of the putative baseplate wedge protein GP075, termed GP075m. While phage K8 adsorbs to hosts via the O-specific antigen of bacterial LPS, phage K8-T239A uses GP075m to also bind the bacterial core oligosaccharide, enabling infection of bacterial strains resistant to K8 infection due to modified O-specific antigens. This mutation in GP075 also alters inter-protein interactions among phage proteins, and reduces the stability of phage particles to environmental stressors like heat, acidity, and alkalinity. We find that a variety of mutations in gp075 are widespread in K8 populations, and that the gp075-like genes are widely distributed among the domains of life. CONCLUSION: Our data show that a typical life history tradeoff occurs between the stability and the host range in the evolution of phage K8. Reservoirs of viral gene variants may be widely present in phage communities, allowing phages to rapidly adapt to any emerging environmental stressors. Video Abstract.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Especificidade de Hospedeiro , Bacteriófagos/genética , Aclimatação , Genes Virais , Fagos de Pseudomonas/genética
12.
Bioresour Technol ; 381: 128774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36822556

RESUMO

Flavin mononucleotide (FMN) is the active form of riboflavin. It has a wide range of application scenarios in the pharmaceutical and food additives. However, there are limitations in selecting generic high-throughput screening platforms that improve the properties of enzymes. First, the biosensor in response to FMN concentration was constructed using the FMN riboswitch and confirmed the function of this sensor. Next, the FMN binding site of the sensor was saturated with a mutation that increased its fluorescence range by approximately 127%. Then, the biosensor and the base editing system based on T7RNAP were combined to construct a platform for rapid mutation and screening of riboflavin kinase gene ribC mutants. The mutants screened using this platform increased the yield of FMN by 8-fold. These results indicate that the high-throughput screening platform can rapidly and effectively improve the activity of target enzymes, and provide a new route for screening industrial enzymes.


Assuntos
Mononucleotídeo de Flavina , Riboswitch , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/metabolismo , Riboswitch/genética , Riboflavina/genética , Riboflavina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo
13.
Biotechnol Biofuels Bioprod ; 16(1): 8, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639820

RESUMO

BACKGROUND: (R)-mandelic acid (R-MA) is a highly valuable hydroxyl acid in the pharmaceutical industry. However, biosynthesis of optically pure R-MA remains significant challenges, including the lack of suitable catalysts and high toxicity to host strains. Adaptive laboratory evolution (ALE) was a promising and powerful strategy to obtain specially evolved strains. RESULTS: Herein, we report a new cell factory of the Gluconobacter oxydans to biocatalytic styrene oxide into R-MA by utilizing the G. oxydans endogenous efficiently incomplete oxidization and the epoxide hydrolase (SpEH) heterologous expressed in G. oxydans. With a new screened strong endogenous promoter P12780, the production of R-MA was improved to 10.26 g/L compared to 7.36 g/L of using Plac. As R-MA showed great inhibition for the reaction and toxicity to cell growth, adaptive laboratory evolution (ALE) strategy was introduced to improve the cellular R-MA tolerance. The adapted strain that can tolerate 6 g/L R-MA was isolated (named G. oxydans STA), while the wild-type strain cannot grow under this stress. The conversion rate was increased from 0.366 g/L/h of wild type to 0.703 g/L/h by the recombinant STA, and the final R-MA titer reached 14.06 g/L. Whole-genome sequencing revealed multiple gene-mutations in STA, in combination with transcriptome analysis under R-MA stress condition, we identified five critical genes that were associated with R-MA tolerance, among which AcrA overexpression could further improve R-MA titer to 15.70 g/L, the highest titer reported from bulk styrene oxide substrate. CONCLUSIONS: The microbial engineering with systematic combination of static regulation, ALE, and transcriptome analysis strategy provides valuable solutions for high-efficient chemical biosynthesis, and our evolved G. oxydans would be better to serve as a chassis cell for hydroxyl acid production.

14.
Environ Sci Pollut Res Int ; 30(8): 19790-19802, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36241833

RESUMO

Phytoremediation is considered to be the most environmentally friendly green restoration technology for dealing with mine waste. Adding amendments can improve the substrate environment for plant growth and enhance remediation efficiency. Herbaceous plants have become the preferred species for vegetation restoration in abandoned mines because of their fast greening and simple management. After 8 weeks of pot experiments in the early stage, it was shown that the plant height and fresh weight of the plants treated with 5% conditioner and 0.5% straw (C2S2) were significantly higher than those of other treatments. Considering that, in this paper, to explore the effect of composite amendments on physicochemical properties of copper tailings repaired by herbaceous plants, the untreated copper tailings were employed as the control group, whereas copper tailings repaired by ryegrass (Lolium perenne L.), vetiver grass (Chrysopogon zizanioides L.), and tall fescue (Festuca arundinacea) with or without conditioners and straw combination into the compound amendments were taken separately as the test group. After 6 months of planting, the pH, electrical conductivity, water content, available potassium, organic matter, total nitrogen, and available phosphorus in the main physical and chemical properties of copper tailings in each experimental area were analyzed. The results showed that the electrical conductivity, organic matter, and total nitrogen content of copper tailings were improved to a certain extent by planting plants without treatment. Meanwhile, compared with the control group, all indexes of planting plants showed an upward trend after adding composite amendments. Among them, pH, water content, and available potassium content of copper tailings were enhanced more obviously. Furthermore, as discovered from the gray correlation analysis results, vetiver grass planted with composite amendments has the best comprehensive effect of improving the physicochemical properties of copper tailings, followed by tall fescue and ryegrass.


Assuntos
Lolium , Poluentes do Solo , Cobre/análise , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Plantas , Água/análise , Potássio/análise , Nitrogênio/análise
15.
Front Microbiol ; 13: 977337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992721

RESUMO

Prodigiosin (PG), a red linear tripyrrole pigment produced by Serratia marcescens, has attracted attention due to its immunosuppressive, antimicrobial, and anticancer properties. Although many studies have been used to dissect the biosynthetic pathways and regulatory network of prodigiosin production in S. marcescens, few studies have been focused on improving prodigiosin production through metabolic engineering in this strain. In this study, transcription factor engineering and promoter engineering was used to promote the production of prodigiosin in S. marcescens JNB5-1. Firstly, through construing of a Tn5G transposon insertion library of strain JNB5-1, it was found that the DNA-binding response regulator BVG89_19895 (OmpR) can promote prodigiosin synthesis in this strain. Then, using RNA-Seq analysis, reporter green fluorescent protein analysis and RT-qPCR analysis, the promoter P17 (P RplJ ) was found to be a strong constitutive promoter in strain JNB5-1. Finally, the promoter P17 was used for overexpressing of prodigiosin synthesis activator OmpR and PsrA in strain JNB5-1 and a recombinant strain PG-6 was obtained. Shake flask analysis showed that the prodigiosin titer of this strain was increased to 10.25 g/L, which was 1.62-times that of the original strain JNB5-1 (6.33 g/L). Taken together, this is the first well-characterized constitutive promoter library from S. marcescens, and the transcription factor engineering and promoter engineering can be also useful strategies to improve the production of other high value-added products in S. marcescens.

16.
Bioresour Technol ; 359: 127461, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35700900

RESUMO

L-valine is a valuable amino acid in mammals that is used as the main component of feed additives. The low efficiency of the fermentation titer limits the industrial application of L-valine. Here, an L-valine-producing strain of Escherichia coli was obtained using a multi-modular strategy. Initially, a chassis strain was generated by mutagenesis and high-throughput screening. The L-valine biosynthetic pathway and transport module were modified to improve the L-valine titer. Subsequently, the transcription factors associated with L-valine biosynthesis were investigated. Overexpression of PdhR and inhibition of the expression of RpoS promoted L-valine synthesis. Finally, the NADPH supply was enhanced after the introduction of the heterologous Entner-Doudoroff (ED) pathway from Zymomonas mobilis. The strain VAL38 produced 92 g/L L-valine in a 5-L bioreactor with a yield of 0.34 g/g glucose. This strategy is provided as a reference for improving the production performance of cell factories for L-valine and its derivatives.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Engenharia Metabólica , Valina , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fermentação , Engenharia Metabólica/métodos , NADP/metabolismo , Valina/biossíntese
17.
ACS Synth Biol ; 11(5): 1801-1810, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35467340

RESUMO

Riboflavin is an essential vitamin widely used in the food, pharmaceutical, and feed industries. However, the insufficient supply of precursors caused by the imbalance of intracellular metabolic flow limits the riboflavin synthesis by industrial strains. Here, we increase riboflavin production by tuning multiple gene expression to balance intracellular metabolic flow. First, we tuned the expression of mCherry and egfp genes within operons by generating libraries of tunable intergenic regions (TIGRs) and confirmed the relative expression of the two reporter genes. The TIGR library can coordinate the expression ratio of reporter genes more than 180 times in Escherichia coli and more than 70 times in Bacillus subtilis. Next, we used this strategy to tune the expression of zwf, ribBA, and ywlf genes within operons through the TIGR library to increase the intracellular precursor pool for riboflavin biosynthesis. Based on the fluorescence characteristics of riboflavin, 96-well plates were used to screen the optimal combination mutants quickly. The best-engineered strain was selected from the library, which produced 2.7 g/L riboflavin, increasing by 64.35% in the shake flask. Finally, the riboflavin titer increased by 59.27% to 11.77 g/L in fed-batch fermentation. The strategy described here will contribute to the industrial production of riboflavin and related products by B. subtilis.


Assuntos
Bacillus subtilis , Óperon , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica , Óperon/genética , Riboflavina
18.
Biology (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36671763

RESUMO

Promoters serve as the switch of gene transcription, playing an important role in regulating gene expression and metabolites production. However, the approach to screening strong constitutive promoters in microorganisms is still limited. In this study, a novel method was designed to identify strong constitutive promoters in E. coli and S. marcescens based on random genomic interruption and fluorescence-activated cell sorting (FACS) technology. First, genomes of E. coli, Bacillus subtilis, and Corynebacterium glutamicum were randomly interrupted and inserted into the upstream of reporter gene gfp to construct three promoter libraries, and a potential strong constitutive promoter (PBS) suitable for E. coli was screened via FACS technology. Second, the core promoter sequence (PBS76) of the screened promoter was identified by sequence truncation. Third, a promoter library of PBS76 was constructed by installing degenerate bases via chemical synthesis for further improving its strength, and the intensity of the produced promoter PBS76-100 was 59.56 times higher than that of the promoter PBBa_J23118. Subsequently, promoters PBBa_J23118, PBS76, PBS76-50, PBS76-75, PBS76-85, and PBS76-100 with different strengths were applied to enhance the metabolic flux of L-valine synthesis, and the L-valine yield was significantly improved. Finally, a strong constitutive promoter suitable for S. marcescens was screened by a similar method and applied to enhance prodigiosin production by 34.81%. Taken together, the construction of a promoter library based on random genomic interruption was effective to screen the strong constitutive promoters for fine-tuning gene expression and reprogramming metabolic flux in various microorganisms.

19.
Nucleic Acids Res ; 50(1): 127-148, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893884

RESUMO

Serratia marcescens is a Gram-negative bacterium of the Enterobacteriaceae family that can produce numbers of biologically active secondary metabolites. However, our understanding of the regulatory mechanisms behind secondary metabolites biosynthesis in S. marcescens remains limited. In this study, we identified an uncharacterized LysR family transcriptional regulator, encoding gene BVG90_12635, here we named psrA, that positively controlled prodigiosin synthesis in S. marcescens. This phenotype corresponded to PsrA positive control of transcriptional of the prodigiosin-associated pig operon by directly binding to a regulatory binding site (RBS) and an activating binding site (ABS) in the promoter region of the pig operon. We demonstrated that L-proline is an effector for the PsrA, which enhances the binding affinity of PsrA to its target promoters. Using transcriptomics and further experiments, we show that PsrA indirectly regulates pleiotropic phenotypes, including serrawettin W1 biosynthesis, extracellular polysaccharide production, biofilm formation, swarming motility and T6SS-mediated antibacterial activity in S. marcescens. Collectively, this study proposes that PsrA is a novel regulator that contributes to antibiotic synthesis, bacterial virulence, cell motility and extracellular polysaccharides production in S. marcescens and provides important clues for future studies exploring the function of the PsrA and PsrA-like proteins which are widely present in many other bacteria.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , Prodigiosina/biossíntese , Serratia marcescens/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Depsipeptídeos/biossíntese , Movimento , Óperon , Polissacarídeos Bacterianos/biossíntese , Regiões Promotoras Genéticas , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidade , Fatores de Transcrição/metabolismo
20.
Metab Eng ; 68: 46-58, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481976

RESUMO

Riboflavin is an essential nutrient for humans and animals, and its derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are cofactors in the cells. Therefore, riboflavin and its derivatives are widely used in the food, pharmaceutical, nutraceutical and cosmetic industries. Advances in biotechnology have led to a complete shift in the commercial production of riboflavin from chemical synthesis to microbial fermentation. In this review, we provide a comprehensive review of biotechnologies that enhance riboflavin production in microorganisms, as well as representative examples. Firstly, the synthesis pathways and metabolic regulatory processes of riboflavin in microorganisms; and the current strategies and methods of metabolic engineering for riboflavin production are systematically summarized and compared. Secondly, the using of systematic metabolic engineering strategies to enhance riboflavin production is discussed, including laboratory evolution, histological analysis and high-throughput screening. Finally, the challenges for efficient microbial production of riboflavin and the strategies to overcome these challenges are prospected.


Assuntos
Flavina-Adenina Dinucleotídeo , Riboflavina , Vias Biossintéticas , Biotecnologia , Engenharia Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...